Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist.

نویسندگان

  • M F Bear
  • A Kleinschmidt
  • Q A Gu
  • W Singer
چکیده

To assess the possibility that NMDA receptors play a special role in visual cortical plasticity, the selective antagonist 2-amino-5-phosphonovaleric acid (APV) was continuously infused into the striate cortex of kittens as the visual environment was manipulated during the critical period. The cortex was studied using single-unit recording from sites between 3 and 6 mm from the infusion cannulae. One week of D,L-APV infusion coincident with monocular deprivation or "reverse suture" produced a concentration-dependent increase in the percentage of neurons that (1) lacked normal orientation selectivity and (2) were responsive to stimulation of the deprived eye. These effects outlasted the presence of the drug in the tissue. APV treatment also prevented the acquisition of selectivity and visual responsiveness that normally results from monocular visual experience after dark-rearing. Lasting effects of chronic APV infusion were not observed in adult striate cortex. The effects of APV on kitten striate cortex depended on the presence of the D stereoisomer as infusion of L-APV was without effect. Estimates of extracellular concentration using 3H-APV indicated that significant effects could be obtained with concentrations as low as 20 microM D,L-APV. Recordings from units during infusion indicated that visual responses were reduced by APV. Nonetheless, a normal percentage of visually responsive neurons was found at sites greater than or equal to 3 mm from the infusion cannula. There was no evidence that chronic APV infusion affected the sampling frequency of recorded neurons or disrupted cytoarchitecture at the sites further than 3 mm from the infusion cannula. Taken together, the data indicate that the effects of APV on kitten striate cortex are likely due specifically to the blockade of NMDA receptors. These data are considered in relation to several hypotheses concerning the role of NMDA receptors in the experience-dependent development of striate cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 1990